# U. S. DEPARTMENT DF COMMERCE <br> NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE NATIDNAL METEORDLDGICAL CENTER 

## OFFICE NDTE 351

THE HYDRDSTATIC CHECKING DF RADIDSONDE HEIGHTS AND TEMPERATURES. PART II

WILLIAM G. COLLINS DEVELDPMENT DIVISIDN

AND

LEV S. GANDIN UNIVERSITY OF MARYLAND

## FEBRUARY 1989

THIS IS AN UNREVIEWED MANUSCRIPT, PRIMARILY INTENDED FOR INFORMAL EXCHANGE DF INFORMATION AMONG NMC STAFF MEMBERS.

## I. Introduction

This Office Note documents improvements to the new NMC hydrostatic check of radiosonde data. It brings up-to-date Dffice Note 344, in which the basic theory was presented and early results were shown. The hydrostatic check of radiosonde temperatures and heights relies on the redundancy of the data. The radiosonde instrument measures temperatures, and the heights are determined from the temperatures by use of the hydrostatic equation. There is the possibility to measure the radiosonde height independently, but this opportunity is not presently used. Following the hydrostatic integration, the data are encoded and transmitted as a message. If the heights and temperatures decoded by NMC do not agree hydmostatically within certain limits, the decoded value of height (s) or temperature (s) must be in error. The new hydrostatic check (HSC) inspects the pattern of disagreement numbers, called hydrostatic residuals, to determine the value(s) that is (are) in error, and some new improvements try to determine the most likely original value. The logic of the code has also been improved to try to better handle more complicated error patterns. Recently, a check of the agreement of the low-level mandatory level heights and the reported surface pressure has been added. These improvements and the monitoring system will be described in Section II.

The extensive testing of the modifications will be described in Section III. Section IV will present the results of those tests and Section $V$ will detail some specific questions. The final Section VI will describe plans for the future.

The HSC was implemented in the FINAL cycle, 4 times a day, beginming December 14, 198日. Following a period of examination and determination of robustness within the NMC operations, the HSC was then implemented into operations at all places where the old hydrostatic check, HYDROCHK, is executed (about 20 per day).

## II. Improvements

The improvements from the documentation in Office Note 344 fall into two categories: improvements to the corrected values, and improvements to the monitoring of the system. Among the improvements to the corrected values, likewise, there are two categories: improvement to the exact value of the correction, and better determination of which values are in error. The improvements to the corrected values will be considered first.

## Determination of correction value

The hydrostatic errors determined by HSC are "human" errors. They have been introduced because a person has in some way made an error in handling the data. Only in extremely rare cases is

```
the error due to communication or computer error. A list of
possible errors includes a manual computation error, sign error,
transcription error or typing error. The errors are not due to
errors in the value received at the ground from the radiosonde,
for there are not yet any heights for the temperatures to be
inconsistent with. Since the errors are 'human' errors, and deal
with the data in decimal form, we expect certain types of
corrections to be predominantly necessary, namely: sign
correction, single digit correction, or interchange of digits
correction. The HSC code first determines a provisional
correction from the pattern of hydrostatic residuals (see Office
Note 344 for the basic theory). Then sign (for temperature),
single digit or interchange of digit corrections ("simple'
corrections) are sought within a range of the provisional value
of the correction. The range for temperature is }5\mathrm{ degrees and
for height is }15\mathrm{ meters. The closest 'simple' correction is
accepted if one exists. Dtherwise, the provisional value is
used.
```


## Correction pairs

A single error in height or temperature leads to a pair of hydrostatic residuals for the layer above and below. The previous note described how cormections are made in this case. The last section described modifications to make the corrected value more likely to be the original value of the data. When there are errors at adjacent layers, the pattern of residuals is more complicated. There are generally three residuals of moderate size for two adjacent errors. Figure 1 shows the arrangement of variables. Heights are denoted by $z$, temperatures by $T$, and residuals by 5 . It is possible to determine the nature of the errors by examination of the residuals. We note that if two errors occur at the same level, the error cannot be reliably determined. However, even in this case a correction pair is suggested (Type 3 error).


Figure 1.--Arrangement of variables for hydrostatic check.

The theory for the correction to variables when three residuals must be considered will be developed in this section. If we assume that there are no errors in height or temperature, that we can neglect the difference between temperature and virtual temperature, and assume that the temperature varies
linearly with the logarithm of pressure between mandatory levels, then the hydrostatic equation gives

$$
\begin{equation*}
0=z_{i+1}-z_{i}-A_{i}^{i+1}-B_{i}^{i+1}\left(T_{i}+T_{i+1}\right) \tag{1}
\end{equation*}
$$

with

$$
\begin{aligned}
& A_{i}{ }^{i+1}=\left(R T_{0} / g\right) \ln \left(p_{i} / p_{i}+1\right) \\
& B_{i}{ }^{i+1}=(R / 2 g) \ln \left(p_{i} / p_{i+1}\right)
\end{aligned}
$$

$R$ is the gas constant, $T_{0}=273.15 \mathrm{~K}$ and $g$ is the acceleration of gravity. If there are errors in height, dz, and temperature, dT, then the equation for the residuals is

$$
\begin{equation*}
s_{i}{ }^{i+1}=z_{i+1}+d z_{i+1}-z_{i}-d z_{i}-A_{i}{ }^{i+1}-B_{i}{ }^{i+1}\left(T_{i}+d T_{i}+T_{i}+1+d T_{i+1}\right) \tag{2}
\end{equation*}
$$

By subtraction of (1) from (2), we obtain an equation for the residuals and errors.

$$
\begin{equation*}
s_{i}^{i+1}=d z_{i+1}-d z_{i}-B_{i}^{i+1}\left(d T_{i}+d T_{i+1}\right), i=1,2,3 \tag{3}
\end{equation*}
$$

We are considering errors at the interior levels, 2 and 3 in Figure 1, without errors at the bounding levels. Therefore, expanded for the three layers is

$$
\begin{align*}
& s_{1}^{2}=d z_{2}-B_{1} z_{d} T_{2} \\
& s_{2}^{3}=d z_{3}-d z_{2}-B_{2}^{3}\left(d T_{2}+d T_{3}\right)  \tag{4}\\
& s_{3}^{4}=-d z_{3}-B_{3} 4 d T_{3}
\end{align*}
$$

Four special cases of (4) are considered. The details of one will be shown; the others follow a similar line of reasoning.

Special case -- two height errors (Type 7)
In this case, it is assumed that $d T_{2}=d T_{3}=0$., while $d z_{2}$ and dzs are nonzero. Then equations (4) become

$$
\begin{align*}
& s_{1} 2=d z_{2} \\
& s_{2}^{3}=d z_{3}-d z_{2}  \tag{4a}\\
& s_{3}^{4}=-d z_{3}
\end{align*}
$$

It can be seen that in this case, $s_{1}{ }^{2}+s_{2}{ }^{3}+s_{3}^{4}=0$. However, this strict equality does not account for any of the assumptions made earlier, primarily the nonlinearity of $T$ with respect to In(pressure). Therefore, the equality must be relaxed somewhat. In terms of temperature deviations, we may write

$$
\begin{align*}
s_{1}^{2}+s_{2}^{3}+s_{3}^{4} & =-B_{1} 2 d T_{2}-B_{2}^{3}\left(d T_{2}+d T_{3}\right)-B_{3}^{4} d T_{3} \\
& =-\left(B_{1} 2+B_{2}^{3}\right) d T_{2}-\left(B_{2}^{3}+B_{3}^{4}\right) d T_{3} \tag{5}
\end{align*}
$$

We choose a limiting value of 5 degrees Celsius to be the maximum error in the resulting layer temperatures from the height corrections. Each temperature error in (5) is replaced by dT1im and we consider the limit for random, independent errors with magnitudes less than or equal to dTIim. This leads to the following inequality to define the conditions under which we define an error to be of the type assumed, namely, two height errors:

$$
\begin{equation*}
\left|s_{1}^{2}+s_{2}^{3}+s_{3}^{4}\right|<\sqrt{\left(B_{1}^{2}+B_{2}^{3}\right)^{2}+\left(B_{2}^{3}+B_{3}^{4}\right)^{2}} d T_{1 i m} \tag{6}
\end{equation*}
$$

The corrections are taken from (4a). Namely,

$$
\begin{equation*}
d z_{2}=s_{1} 2 \quad \text { and } \quad d z_{3}=-53^{4} \tag{ba}
\end{equation*}
$$

The conditions for the other cases are stated without comment.

## Two temperature errors (Type 8)

Assumptions: $d z_{2}=d z_{3}=0 . ; \quad d T_{2}$ and $d T 3$ not zero. Type $B$ is diagnosed if
with dzlim $=15$ meters. The temperature corfections are

$$
\begin{equation*}
d T_{2}=s_{1}^{2 / B_{1}^{2}} \text { and } \quad d T_{3}=53^{4 / B_{3}^{4}} \tag{7a}
\end{equation*}
$$

Lower height error, upper temperature error (Type 9)
Assumptions: $d T_{2}=d z_{3}=0 . ; \quad d z_{2}$ and $d T_{3}$ not $z e r o$.

$$
\begin{align*}
& \left|B_{3}^{4}\left(5_{1} 2+5_{2}^{3}\right)-B_{2}^{3} 5_{3}^{4}\right| \\
& <\sqrt{\left(B_{1}^{2}+B_{2}^{3}\right)^{2}\left(B_{3}^{4}\right)^{2} d T_{1 i m}^{2}+\left(B_{2}^{3}+B_{3}^{4}\right)^{2} d_{1 i m}{ }^{2}} \tag{8}
\end{align*}
$$

The height and temperature corrections are

$$
\begin{equation*}
d z_{2}=-5_{1} 2 \text { and } \quad d T_{3}=s_{3}^{4 / \theta_{3}} \tag{Ba}
\end{equation*}
$$

Lower temperature error, upper height error (Type 10)
Assumptions: $d z_{2}=d T_{3}=0 . ; \quad d T_{2}$ and $d z_{3}$ not zero.

$$
\begin{align*}
& \left|\mathrm{B}_{1}^{2}\left(5_{2}^{3}+5_{3}^{4}\right)-\mathrm{B}_{2}{ }_{5} 5_{1}^{2}\right| \\
& <\sqrt{\left(\mathrm{B}_{2}^{3}+\mathrm{B}_{3}^{4}\right)^{2}\left(\mathrm{~B}_{1}^{2}\right)^{2} \mathrm{dT}_{1 i m}+\left(\mathrm{B}_{1}^{2}+\mathrm{B}_{2}^{3}\right)^{2} \mathrm{dz}_{1 \mathrm{i}}{ }^{2}} \tag{9}
\end{align*}
$$

The temperature and height corrections are

$$
\begin{equation*}
d z_{3}=s_{3}^{4} \quad \text { and } \quad d T_{2}=s_{1}^{2 / B_{1}} 2 \tag{9a}
\end{equation*}
$$

Reconsideration of logic of error determination
Qur first concern has been to find those errors that can be most confidently corrected. In order to do this, the pairs of residuals with the largest values were considered first, followed by lesser residuals, until all layers are inspected. In the new logic, the error determination always begins with the lowest layer and proceeds upward to the top. Confident height and temperature corrections are always sought first, followed by pairs of somewhat less confident pairs of corrections (Types 7 to 10). Any correctable errors are corrected and a second pass of the data is made from the bottom to top. This new logic is not incorporated in operations, since only the confident corrections are made to height and temperature (Types 1 and 2). However, recent tests have been made which show the new error determination strategy to be generally superior. It may be decided in the future to incorporate Types 7 to 10 error corrections operationally if they are found to be highly reliable.

In the Complex Quality Control strategy, several checks are combined to make decisions of data quality. Within that system, the revised logic of the hydrostatic check will become not merely another option, but necessary, since checks may be repeated several times, based upon provisional modifications to the data.

## Baseline check

Sometimes there is an error in the lowest reported height which cannot be determined by the hydrostatic check. However, the two lowest level heights and the reported surface pressure should be consistent with the station height. This consistency can be checked by assuming a standard structure to the temperature profile in the lower atmosphere. The check uses the lowest two heights to determine a layer mean temperature and assumes a standard lapse rate to hold downward to the surface of -6. 5 degrees/kilometer. Then the computed value of the station height is obtained from the following equations.

$$
\begin{align*}
& b=-.0065 \\
& z_{l a y}=1 / 2\left(z_{1}+z_{2}\right) \\
& \alpha_{l a y}=\left(p_{2} / P_{1}\right)-R b / 9 \\
& T_{1 a y}=-L_{b}\left(z_{z^{-z}}\right)\left[\frac{1+\alpha_{1 a y}}{1-\alpha_{1 a y}}\right] \\
& \alpha=\left(p_{5} / P_{1}\right)-R b / 9 \\
& z_{s}^{c}=z_{1}+[(\alpha-1) / b] *\left[T_{1 a y}+b\left(z_{1}-z_{l a y}\right)\right]
\end{align*}
$$

The computed value of the surface height, $z_{5}{ }^{c}$ should agree with the station height to within 10 to 20 meters at most. Stations with greater disagreement are printed out for consideration by the MOD analysts.

## Error and correction summaries

Detailed information is available daily from the HSC. All profiles containing errors are listed in full, and then the errors and corrections are summarized by error type. TABLE 1 contains a sample of this information.

A Monthly Summary is produced from the daily summaries. It contains tables of errors stratified by 1) error type and pressure, 2) WMO station block, 3) WMO station block for each error type, and 4) error types listed separately for each station having an error. The table of errors for December 1988 , by WMO block is shown in Table 2. Note the large number of errors for stations in blocks 20-38, 42-43, 50-59, 71 and 94. These blocks are for U.S.S.R., India, China, Canada and Australia. Table 3 shows a summary for these countries. And Table 4 shows a summary of the errors detected, classified by error type.
III. Testing of the HSC

The HSC has undergone extensive testing, both by the authors and by Valerie Thompson and Bill Whitmore of NMC's Meteorological Dperations Division. The MOD evaluation extended from October 1, 1988 to Dctober 31, 1988. During this period there were 995

## TABLE 1 -- DAILY SUMMARY OF ERRDRS AND CDRRECTIONS

| IDENT PRESS | HEIGHT | TEMP | RESID1 | RESID2 | HGT COR TMP COR NEW HGT |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 12425 | 100 | 13220. | -55.1 | -2986.1 | 2998.2 | 3000. | 0.0 | 16220. |
| 10410 | 250 | 10140. | -31.5 | -61.9 | -69.5 | 0. | -21.6 | 10140. |
| 42410 | 400 | 7350. | 29.0 | -150.4 | -1484.9 | -60. | -63.7 | 7350. |
| 28661 | 1000 | 80. | 82.8 | 0.0 | -205.6 | -206. | -86.4 | 80. |
| 48601 | 30 | 26960. | 8.0 | 2772.6 | 0.0 | -2770. | 370.6 | 26960. |

Table 1 continued--
NEW TMP NEW S1 NEW 52 CTYP DATE/TIME

| -55.1 | 13.9 | -1.8 | 1 | 89011300 |
| ---: | ---: | ---: | ---: | ---: |
| -53.1 | -4.2 | 1.1 | 2 | 89011300 |
| 29.0 | -150.4 | -1684.9 | 3 | 89011300 |
| 82.8 | 0.0 | -205.6 | 4 | 89011300 |
| 8.0 | 2772.6 | 0.0 | 5 | 89011300 |

```
RESID1,2 - residuals
HGT COR - ht correction
TMP COR - temp. corr.
NEW 51 - new residual 1
NEW S2 - new residual 2
CTYP - correction type
NEW HGT - new height
NEW TMP - new temp.
```

HGT COR - ht correction TMP COR - temp. corr. NEW 51 - new residual 1 NEW S2 - new residual 2 CTYP - correction type NEW HGT - new height NEW TMP - new temp.

TABLE 2--Error Counts by Station Block for December 1988
The total number of hydrostatic errors detected: 4121

| units--> | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $00$ | 0 | 4 | 9 | 3 | 7 | 0 | 3 | 17 | 5 | 1 |
| 10 | 22 | 3 | 21 | 13 | 0 | 52 | 26 | 36 | 0 | 0 |
| 20 | 32 | 23 | 15 | 43 | 91 | 59 | 11 | 20 | 30 | 33 |
| 30 | 75 | 83 | 28 | 19 | 31 | 30 | 32 | 71 | 94 | 0 |
| 40 | 48 | 66 | 317 | 274 | 145 | 0 | 53 | 64 | 172 | 0 |
| 50 | 39 | 111 | 72 | 60 | 105 | 23 | 92 | 98 | 24 | 66 |
| 60 | 78 | 76 | 31 | 26 | 15 | 10 | $\bigcirc$ | 53 | 4 | 0 |
| 70 | 14 | 233 | 24 | 0 | 8 | $\bigcirc$ | 64 | 0 | 40 | 0 |
| B0 | 12 | 4 | 58 | 34 | 4 | 16 | 3 | 73 | 0 | 21 |
| 90 | 0 | 62 | 0 | 68 | 113 | 0 | 88 | 18 | 0 | 0 |

confident height corrections and $62 B$ confident temperature corrections made by HSC, out of a total of 3380 hydrostatic errors. Of the confident corrections, 262 underwent an examination by MOD for "reasonableness". A further 184 underwent a visual test, involving comparison on maps with surrounding data. And finally, 12 error corrections were examined in great detail. There were a few cases where the hydrostatic correction did not lead to the correct value, but in no case was this due to a flaw in the hydrostatic correction algorithm itself. In one case the baseline was in error. In the second case, the profile contained two isolated errors which canceled each other. On December 14, 1988 the HSC was put into operations, just preceding HYDROCHK in the FINAL cycle four times daily. (HYDROCHK is the present check, which flags some bad data, based upon hydrostatic, wind shear, and lapse rate considerations.) HSC’s results have
been scrutinized daily since that time, with results sent to a file from which the monthly summaries are obtained. On January 11, 1989 the HSC began operations in all places that HYDROCHK is run, being run just prior to it. In this way, the data corrected by HSC will not be flagged by HYDROCHK. The operational modifications to the data by HSC are only made for confident height and temperature corrections, but the other corrections are listed for evaluation.

## TABLE 3--Countries with Large Number of Errors for December 1988

| U.S.S.R. | 820 | $20 \%$ |
| :--- | :--- | ---: |
| China | 690 | $17 \%$ |
| Indian subcontinent | 591 | $14 \%$ |
| Canada | 233 | $6 \%$ |
| Australia | 113 | $3 \%$ |

## TABLE 4--Summary of Hydrostatic Errors by Type for December 1988

(Summary for 61 observation times, about 37,000 observations.) Classification of Errors

| Type | Description | number | percent |
| :---: | :---: | :---: | :---: |
| 1 | confident height correction | 984 | 23.9 |
| 2 | confident temperature correction | 769 | 18.7 |
| 3 | correction pair ( $z, T$ ) | 321 | 7.8 |
| 4 | error at lowest level | 418 | 10.1 |
| 5 | error at top level | 763 | 18.5 |
| 6 | isolated large residual | 397 | 9.7 |
| 7 | two height errors | 47 |  |
| 8 | two temp. errors using three | 13 | partial month |
| 9 | lower $z$, upper T large residuals | 14 | about 5 percent |
| 10 | lower $T$, upper $z$ | 28 |  |
| 11 | small height correction | 296 | 7.2 |
| 12 | temp. corr. giving unstable layer | 69 | 1.7 |

The restructured code, described in the section Reconsideration of logic of error determination, has also undergone continuous testing. All modifications which the authors wish to test are executed routinely twice a day on the FINAL data. In this way it is possible to collect and build up a library of particularly difficult cases.

## IV. Examples and Special Problems

In about half the cases of large hydrostatic residuals, an error is isolated and the hydrostatic residual pattern makes it evident what the correction is to be. In the other cases, however, we have found many possible difficulties. Correction types $7-10$ are designed to correct some of these more complicated cases. To date, we do not make corrections to the data in these cases, but merely list what the correction should be. Some of these interesting cases will be shown below.

The first four examples will show profile fragments to illustrate how correction Types 7 to 10 perform. Table 5 shows a Type 7 correction--two height errors. The table shows the reported heights and temperatures and their corrected values, the residuals before and after correction (RESID and NEW-S), the corrections (ZCDR and TCOR) and the error type (TYP). In many cases, one of the height errors will be smaller than 100 meters, but is given credence by the residual pattern of the adjacent error.

TABLE 5--Two height errors, Type 7 correction.

| Statio | n: 387 | 50 Dat | /Time: | 890107 | 712 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRESS | HEIGHT | NEW-HT | TEMP. | NEW-T | RESID | NEW-S | ZCDR | TCOR | TYP |
| 500 | 5560. | 5560. | -23.7 | $-23.7$ |  |  | 0. | 0.0 | 0 |
|  |  |  |  |  | -987.3 | 12.7 |  |  |  |
| 400 | 6160. | 7160. | $-36.9$ | -36.9 |  |  | 1000. | 0.0 | 7 |
|  |  |  |  |  | 1199.8 | -0.2 |  |  |  |
| 300 | 9300. | 9100. | -48.9 | -48.9 |  |  | -200. | 0.0 | 7 |
| 250 | 10290. | 10290. | -54.7 | -54.7 | -192.1 | 7.9 | 0. | 0.0 | 0 |

Table 6 shows an example of corrections to two temperatures (Type 8 correction). The 400 mb temperature has a sign error plus an error to one digit. The 300 mb temperature has an error in one digit.

TABLE 6--Two temperature errors, Type 8 correction.

| Statio | : 516 | Da | /Time: | 890109 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRESS | HEIGHT | NEW-HT | TEMP. | NEW-T | RESID | NEW-5 | ZCOR | TCOR | TYP |
| 500 | 5490. | 5490. | -34.7 | -34.7 |  |  | $\bigcirc$. | 0.0 | 0 |
|  |  |  |  |  | -145.0 | 11.9 |  |  |  |
| 400 | 7030. | 7030. | 4.0 | -44.0 |  |  | 0. | -4B. 0 | 8 |
|  |  |  |  |  | -65.2 | 10.7 |  |  |  |
| 300 | 8940. | 8940. | -81.5 | -51.5 |  |  | 0. | 30.0 | B |
|  |  |  |  |  | 87.8 | 7.7 |  |  |  |
| 250 | 10110. | 10110. | $-59.5$ | -59.5 |  |  | 0. | 0.0 | 0 |

Table 7 shows an example of a Type 9 correction; there is an error to the lower height and upper temperature. In this case, there is a relatively small error to the 250 mb height and a sign error to the 200 mb temperature. This sign error is quite evident, but would not have been detected automatically without looking at all three layers, because the 250-200 mb and 200-150 mb residuals, divided by the "B"s, differ too much from each other.

TABLE 7--Lower height error, upper temperature error, Type 9 correction.

| Statio | n: 4428 | 8 Da | /Time: | 890110 | 000 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRESS | HEIGHT | NEW-HT | TEMP. | NEW-T | RESID | NEW-S | ZCOR | TCOR | TYP |
| 300 | 8850. | 8850. | -56.3 | -56.3 |  |  | 0. | 0.0 | $\bigcirc$ |
|  |  |  |  |  | 65.5 | -4.5 |  |  |  |
| 250 | 10080. | 10080. | -53.9 | -53.9 |  |  | -70. | 0.0 | 9 |
|  |  |  |  |  | -410.4 | 2.1 |  |  |  |
| 200 | 11450. | 11450. | 52.4 | -52.4 |  |  | -. | 04.8 | 9 |
| 150 | 13310. | 13310. | -52.5 | -52.5 | -441.3 | 0.3 | O. | 0.0 | 0 |

Table 8 shows an example of a Type 10 correction; there are errors to the lower temperature and upper height. In this example, there is a sign error to the 500 mb temperature and a single digit error to the 400 mb height. Again, it is necessary to consider the three large residuals together to be able to diagnose either error.

TABLE B--Lower temperature error, upper height error, Type 10 correction.

| Statio | ก: 471 | 58 Dat | /Time: | 88121 | 12 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRESS | HEIGHT | NEW-HT | TEMP. | NEW-T | RESID | NEW-5 | ZCOR | TCOR | TYP |
| 700 | 2866. | 2866. | -23.7 | -23.7 |  |  | O. | 0.0 | 0 |
|  |  |  |  |  | -287.3 | -15.2 |  |  |  |
| 500 | 5290. | 5290. | 27.6 | -27.6 |  |  | 0. | -55.2 | 10 |
|  |  |  |  |  | -910.0 | -10.6 |  |  |  |
| 400 | 6050. | 6850. | -38.1 | -38. 1 |  |  | 800. | 0.0 | 10 |
|  |  |  |  |  | 798.9 | -1.1 |  |  |  |
| 300 | 8800. | 8800. | -45.1 | -45.1 |  |  | 0. | 0.0 | 0 |

The next case is shown to illustrate the complexity of some reports. In this case, there are 8 large residuals which become small after the corrections are applied! However, there still
remains a large residual for the lowest layer. Table 9 shows the reported heights and temperatures and their corrected values.

The corrections for this station are described as follows. There is a large residual between 850 and 700 mb . The suggested corrections are 40 . meters or 14.2 degrees to the 850 mb data. Since the temperature correction does not look likely, the error is probably to the 850 mb height. However, it is possible that the 850-700 mb thickness is in error, in which case, all the heights above 850 mb would need to be corrected. However, the final decision must await a horizontal quality control check. Proceeding upward, large residuals are encountered for the layers

TABLE 9--Example of Complicated Corrections


400-300 mb, 300-250 mb and 250-200 mb. These three residuals are used to diagnose a Type 10 correction (lower temperature, upper height). The corrections are -20.0 degrees to the 300 mb temperature and -900. meters to the 250 mb height, resulting in much improved residuals for the three layers. Next, we encountered large residuals for the layers 200-150 mb and 150-100 mb. They support a Type 2 confident temperature correction to

150 mb of -30.0 degrees. Again, the new residuals are small. Proceeding upward, there are large residuals in the $100-70 \mathrm{mb}$, $70-50 \mathrm{mb}$ and $50-30 \mathrm{mb}$ layers. These residuals support a Type 10 correction pair of -20.0 degrees to the 70 mb temperature and 1000. meters to the 50 mb height. The residuals are greatly improved by these corrections.

The success of our algorithm in this case is no accident. This is a complicated case, but in a sense it is an easy case for the following reasons. First, all correction types are welldetermined; there is little ambiguity. And second, the errors are separated enough so that their residual patterns do not overlap too much. In other cases that prove to be really difficult, one or more of these conditions is lacking. An example is provided by Table 10, in which the sequential nature of the new strategy is essential. Only the lower part of the profile is reproduced. On the first pass, the 400 mb height is corrected by 500 meters. Then the recalculated $500-400 \mathrm{mb}$ residual, and the $700-500 \mathrm{mb}$ residual are used to define the temperature correction at 500 mb .

TABLE 10--Example of Corrections Needing Two Passes

| Statio | : 315 | 8 Dat | /Time: | 890117 | OO |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRESS | HEIGHT | NEW-HT | TEMP. | NEW-T | RESID | NEW-S | ZCOR | TCOR | TYP |
| 1000 | 233. | 233. | 9999.9 | 9999.9 |  |  | 0. | . 0 | 0 |
| 850 | 1431. | 1431. | -16.7 | -16.7 |  |  | O. | . 0 | $\bigcirc$ |
|  |  |  |  |  | 5.6 | 5.6 |  |  |  |
| 700 | 2974. | 2874. | -24.1 | -24.1 |  |  | 0. | . 0 | 0 |
|  |  |  |  |  | -50.9 | $-2.1$ |  |  |  |
| 500 | 5250. | 5250. | -29.7 | -39.6 |  |  | 0. | -10.0 | 2 |
| 400 | 6250. | 6750. | -47.7 | -47.7 | -532.4 | 0.0 | 500. | . 0 | 1 |
|  |  |  |  |  | 496.5 | -3.5 |  |  |  |
| 300 | 9770. | 9770. | -54.9 | -54.7 |  |  | 0. | 0.0 | 0 |

## Data gaps

Not all errors in the radiosonde data show up as hydrostatic inconsistencies. There are frequent errors which make it impossible for the present decoding routines to properly decode a report. In many cases, the lower part of a report is properly decoded, but the upper part is lost. At a later time, the part $C$ transmission may be entirely alright. This gives the impression of a report with missing data from some low level to $100 \mathrm{mb-a}$ data "hole". Some of these holes are detected by the HSC, because of the implied linearity of the temperature profile in our check. Others are only detected by special code written by Automation Division personnel. Following their detection, these cases may be examined by Meteorological Dperations Division
personnel for manual correction. Many reports are salvaged, but many could be corrected automatically.

## Correctable errors in the bottom and top layers

Hydrostatic errors at the lowest and highest level can often be corrected by inspection of the reported values and proposed corrections. The HSC suggests alternative height or temperature corrections. In many cases it is clear which datum is in error, so it clear which correction to use. In other cases, the application of one of the corfections leads to an absurd value, leaving the other correction as the more reasonable. Further evaluation can be done by comparison of corrected values with climatology or surrounding data. For a test period, types 4 and 5 error information were provided to MOD. It was decided that corrections could be make in many cases if the information were provided early enough. Since January 11, 1989 the type 4 and 5 error information has been routinely available at about 0500 Z and 1700 Z .

Examples of the reasoning that can be used in many cases to determine a likely correction is provided by Tables 11 and 12. Table 11 show an error at the top of a profile. The suggested corrections are either 1090. meters or -107.9 degrees. The reported temperature of 55.6 degrees at 10 mb is clearly wrong and a correction of -107.9 gives a reasonable value. It is most likely that the temperature sign is in error. In this case, the application of one of the suggested corrections leads to a positive result.

TABLE 11--Example of Error at the Top (Positive Argument)
Station: 31300 Date/Time: B9020112
PRESS HEIGHT NEW-HT TEMP. NEW-T RESID NEW-S ZCOR TCOR TYP

| 20 | 26070. | 26070. | -54.7 | -54.7 | 0. | .0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1030530. | 30530. | 55.6 | $55.6^{-1094.7-1094.7}$ | 0 |  |  |
| 10 |  | 1090. | -107.9 | 5 |  |  |

Table 12 shows an example where a different kind of reasoning must be applied to determine the likely correction. It shows an error at the lowest layer. Adding the proposed temperature correction to the reported temperature leads to a definitely wrong temperature. Therefore, the likely error is in the lowest level height. A height correction of 100 . meters seems reasonable. In this case, a negative argument is used to obtain the likely correction.


## VI. Plans for the Future

The corrections that can be made most confidently, Types 1 and 2, are now made routinely, operationally. Also, corrections are made manually for the bottom and top layers. With further testing and refinement, we may feel confident to introduce the Types 7 to 10 corrections as well. However, no decision has as yet been made. When the other components of the Complex Quality Control are available, it will then not be as important to try to make as many corrections to the data as possible, based only upon the HSC. When the horizontal and vertical checks are available, then their results can be used to confirm, reject, or modify the HSC conclusions and many more tentative corrections of the HSC will become confident. Development work has begun on the horizontal check of heights and temperatures.

Monitoring and exchange of information
The hydrostatic corrections are monitored daily by MOD. In addition, they examine the errors at the bottom and top for manual corrections to the data. Further, the developers monitor most of the corrections and proposed corrections for subtle difficulties in the performance requiring modification. These kinds of monitoring will continue and slowly change as the present code becomes validated and as new elements of the Complex Quality Control are introduced.

We are exchanging Monthly Summaries of performance of HSC with the ECMWF. There has also been correspondence regarding consistent problems noted with another country, helping to let them know that their difficulty is of importance to others.

## REFERENCES

Collins, W.G. and L.S. Gandin, 1988: The hydrostatic checking of radiosonde heights and temperatures. NOAA, National Weather Service, National Meteorological Center, Office Note 344.

Gandin, L.S., 1988: Complex quality control of meteorological observations. Mon. Wea. Rev., 116 (5), 1137-1156.

DiMego, G.J., P.A. Phoebus and J.E. McDonell, 1985: Data processing and quality control for optimum interpolation analyses at the National Metrorological Center. NOAA, National Weather Service, National Meteorological Center, Qffice Note 30b.

# APPENDIX A - Modified Table for Dffice Note 29. TABLE 101 (DN 29) for Category OB (Additional Data) 



* Table Q. B will be utilized to indicate Part A, B, C, or D of the TEMP, PILOT, TEMP SHIP, or PILDT SHIP reports.

APPENDIX B -- HYDROSTATIC ERROR CORRECTION SUBROUTINES

SUBRDUTINE CORECT ( $Z, T, Z C O R, T C D R ; Z C, T C, 5$, DUM, LEV, ICTYP, IDUM)


```
c
C
C
C
C
C
C
C
MAKE HYDROSTATIC CORRECTIONS.
```

```
    (Z,T) - INPUT (HEIGHT,TEMPERATURE)
```

    (Z,T) - INPUT (HEIGHT,TEMPERATURE)
    (ZC,TC) - OUTPUT (HEIGHT,TEMPERATURE)
    (ZC,TC) - OUTPUT (HEIGHT,TEMPERATURE)
    (ZI,TI) - INTERMEDIATE VALUES DF (HT.,TEMP.)
    (ZI,TI) - INTERMEDIATE VALUES DF (HT.,TEMP.)
    (ZCOR,TCOR) - DUTPUT HT., TEMP. CORRECTIONS
    (ZCOR,TCOR) - DUTPUT HT., TEMP. CORRECTIONS
    (ZCORI,TCDRI) - INTERMEDIATE HT., TEMP. CORRECTIONS
    (ZCORI,TCDRI) - INTERMEDIATE HT., TEMP. CORRECTIONS
    LL'S - VALUES OF L'S FOR EACH SCAN.
    LL'S - VALUES OF L'S FOR EACH SCAN.
    DIMENSION Z(1), T(1), ZC(1), TC(1), ICTYP(1),
    DIMENSION Z(1), T(1), ZC(1), TC(1), ICTYP(1),
    & ZCOR(1), TCOR(1), S(1), DUM(1), IDUM(1),
    & ZCOR(1), TCOR(1), S(1), DUM(1), IDUM(1),
    & ALLZ(5), ALLT(101), ALLZL(31)
    & ALLZ(5), ALLT(101), ALLZL(31)
        COMMON /CDRCT/ SI (54,3), ICTYPI (54,3),
        COMMON /CDRCT/ SI (54,3), ICTYPI (54,3),
    & ZI(55,3), TI(55,3), ZCORI(55,3), TCORI(55,3),
    & ZI(55,3), TI(55,3), ZCORI(55,3), TCORI(55,3),
    & LL1 (55,3), LLL2(55,3), LL3(55,3), LL4(55,3)
    & LL1 (55,3), LLL2(55,3), LL3(55,3), LL4(55,3)
        COMMON /CONSTS/ R, G, TO, A(54), B(54), SS(54)
        COMMON /CONSTS/ R, G, TO, A(54), B(54), SS(54)
    COMMON /LEVEL/ MBOGUS,NPLVL,IPLVL(55)
    COMMON /LEVEL/ MBOGUS,NPLVL,IPLVL(55)
    DATA ZMSG /99999.1, TMSG /9999.9/, ZMAX /90000./,
    DATA ZMSG /99999.1, TMSG /9999.9/, ZMAX /90000./,
    & TMAX 19000.1, DZALL /15.1, DTALL /5.1,
    & TMAX 19000.1, DZALL /15.1, DTALL /5.1,
    & CP /1004.5/,
    & CP /1004.5/,
    & ALLZ /0.,-10.,10.,-20.,20./,
    & ALLZ /0.,-10.,10.,-20.,20./,
    & ALLZL /0.,-1.,1.,-2.,2.,-3.,3.,-4.,4.,-5.,5.,
    & ALLZL /0.,-1.,1.,-2.,2.,-3.,3.,-4.,4.,-5.,5.,
    & -6.,6.,-7.,7.,-8.,8.,-9.,9.,-10.,10.,-11.,
    & -6.,6.,-7.,7.,-8.,8.,-9.,9.,-10.,10.,-11.,
    & 11.,-12.,12.,-13.,13.,-14.,14.,-15.,15./
    ```
    & 11.,-12.,12.,-13.,13.,-14.,14.,-15.,15./
```

```
    DUM, IDUM ARE MERELY PLACE-HOLDERS TO MAKE CALL
```

    DUM, IDUM ARE MERELY PLACE-HOLDERS TO MAKE CALL
    SEQUENCE THE SAME AS AN EARLIER VERSION.
    SEQUENCE THE SAME AS AN EARLIER VERSION.
    DUM(1) = 0.
    IDUM(1) = 0
    DC 5 I=1,101
        IMOD = MOD (I,2) + 1
        ALLT(I) = (-1.)**IMOD * AINT((I+.1)/2.)
    5 CONTINUE
    DO 8 K=1,LEV
        DO }7\textrm{I}=1,
            ZI(K,I) = ZMSG
            TI(K,I) = TMSG
            LL1(K,I) = -9
            LL2(K,I) = -9
            LLS (K,I) = - - 
            LL4(K,I)=-9
    7 CONTINUE
    日 CONTINUE
    DO 10 K=1,LEV
        ZI(K,1)= Z(K)
        TI(K,1) = T(K)
    10 CONTINUE
LEVM = LEV - 1
DO 20 K=1,LEVM
ICTYP(K) = 0
DC 15 I=1,3
ICTYPI (K,I) = 0
15 CONTINUE
2O CONTINUE
DO 30 K=1,NPLVL

```
```

        ZCDR(K) = 0.
        TCOR(K)=0.
        S(K) = 0.
        DO 25 II=1,3
            ZCDRI(K,II) = 0.
            TCORI(K,II) = 0.
    25 CONTINUE
3O CONTINUE

```
```

FIND INDEX DF LAST COMPLETE LEVEL.
DO $32 K=1$, LEV
$K K=L E V-K+1$
IF (ZI (KK, 1).NE.ZMSG.AND.TI (KK, 1).NE.TMSG) GO TO 35
32 CONTINUE
35 LTDP $=K K$
BEGIN CALCULATIONS. GET FOUR LEVELS OF DATA.
ISCAN $=1$
$\operatorname{CON}=0.4$
40 CONTINUE
ISCAN $=$ ISCAN +1
RESET COUNTER FOR RESIDUAL LAYER.
$15=0$
SET BEGINNING VALUES FOR THIS SCAN TO BE THE
SAME AS THEY ENDED LAST SCAN.
IF (ISCAN.GT.3) GD TD 300
DO $42 \mathrm{~K}=1$, LEV
$Z I(K, I S C A N)=Z I(K, I S C A N-1)$
$T I(K, I S C A N)=T I(K, I S C A N-1)$
42 CONTINUE
IF (ISCAN.EQ.3) CON $=0.8$
ISTRT $=0$
LAST $=0$
CALL FIRST(LAST,II(1,ISCAN),TI(1,ISCAN),
\& ZL1, ZLL2, ZL3, ZL4, TL1,TL2,TL3,TL4,
\& L1,L2,L3,L4,LEV, IER)
$L L=L 1$
IF (LL.GT. 55. QR.LL.LT.O) LL $=1$
LLI (LL, ISCAN) $=\operatorname{Li}$
LL2 (LL, ISCAN) $=$ L2
$\operatorname{LL3}(L L, I S C A N)=L 3$
LL4 (LL, ISCAN) $=$ L4
IF (IER.EQ.1) GO TO 300
50 CONTINUE
IF (ISTRT.EQ.O) THEN
LB $=$ LAST
ISTRT $=1$
LAST $=0$
GO TO 60
ENDIF
CALL FNLEV(LAST,II(1,ISCAN), TI(1,ISCAN),

```
```

    * ZL1, ZL2, ZLЗ, ZL4,TL1,TL2,TLЗ,TL4,
    & L1,L2,LS,L4,LEV,IER)
    LL = L1
    IF(LL.GT.55.DR.LL.LT.O) LL = 1
    LL1(LL,ISCAN) = L1
    LL2(LL,ISCAN) = L2
    LLS(LL,ISCAN) = LS
    LL4(LL,ISCAN) = L4
    IF(IER.EQ.1) GO TO 2OO
    IF(LS.GE.LTOP) GO TD 200
    6O CDNTINUE
C
C
C
CALCULATE THE RESIDUALS.
IF(L1.EQ.97)THEN
S1=0.
BSUM1 =0.
SBIG1=0.
ELSE
CALL RES(ZL1, ZL2,TL1,TL2,L1,L2,A,B,SS,S1, BSUM1,SBIG1)
ENDIF
CALL RES(ZL2,ZL3,TL2,TLS,L2,L3,A,B,S5,S2,BSUM2,5BIG2)
FSHAT1 = FSHAT(S1,S2,5BIG1,SBIG2)
FOR LOWEST LAYER, FILL TWO VALUES DF SI. FIRST HERE...
IF(L1.EQ.99) THEN
IS = IS + 1
SI(IS,ISCAN-1)=52
ENDIF
CALL RES(ZLS,ZL4,TLS,TL4,LS,L4,A,B,SS,SS,BSUMS,SBIGS)
FSHATZ = FSHAT (S2,S3,SBIG2,SBIG3)
FILL SECOND VALUE OF SI ALWAYS.
IS=IS+1
SI(IS,ISCAN-1)=S3
CHECK FOR CONFIDENT HEIGHT CORRECTION.
SHGT = ABS(52+53)
SSHGT = (BSLM2+BSUM3) * DTALL * FSHATZ
IF (((ABS (S2).GT.SBIG2.AND.ABS (53).GT.O.5*SBIG3)
\& .OR. (ABS(S3).GT.SEIGS.AND.ABS (S2).GT.0.5*SBIG2))
\& .AND.(L4-L3.LT.3)
\& .AND.(L3-L2.LT.3)
\& .AND. (SHGT.LT.SSHGT)) THEN
ZCORI (LJ,ISCAN) =-0.5*(52-53)
CALL ZCORR(ZLS, ZCDRI(LJ,ISCAN),LS,ALLZL,31;
ALLZ,5, ICTYPI(L3,ISCAN),1)
ZI(LS,ISCAN) = ZLS
TCORI (LS,ISCAN) = 0.
GO TO 50
ENDIF
CHECK FOR CONFIDENT TEMPERATURE CORRECTIDN.

```
```

    STMP = ABS(S2/BSUM2 - 53/BSUM3)
    SSTMP = (1./BSUMZ + 1./BSUMS) * DZALL * FSHAT2
    IF(((ABS (S2).GT.SBIG2.AND.ABS(S3).GT.O.5*SBIG3)
    \& . DR. (ABS (S3).GT.SBIGS.AND.ABS (S2).GT.0.5*SEIG2))
\& - AND.(L4-L3.LT.3)
\& .AND.(L3-L2.LT.3)
\& .AND.(STMP.LT.SSTMP)) THEN
TCORI(LS,ISCAN) = 0.5 * (S2/BSUM2 + 53/BSUMS)
CALL TCORR(TL2,TLS,TL4,TCORI (L3,ISCAN), ZL2, ZLS,ZL4,
\& ALLT,101,ICTYPI (L3,ISCAN),O,2)
TI(L3,ISCAN) = TLS
ZCORI(L3,ISCAN) = O.
GO TD 50
ENDIF
NO CONFIDENT TYPE 1 OR 2 CDRRECTIONS.
IF THERE IS NO 4TH LEVEL DATA,
OR NEAR THE TOP, CHECK FOR ERRORS DF
TYPES 3, 4, 5, AND 6 (STATEMENT ND. 150).
IF(L1.LT.2.DR.L1.EQ.99) GD TO 150
IF(L4.GE.LTOP) GO TO 150
CHECK FOR TWD ERRDRS GIVING LARGE RESIDUALS.
PERFDRM THE TESTS ONLY FOR SUFFICIENTLY LARGE RESIDUALS.

```
```

    R1 = ABS(S1)/SBIG1
    ```
    R1 = ABS(S1)/SBIG1
    R2 = ABS(S2)/SBIG2
    R2 = ABS(S2)/SBIG2
    R3 = ABS(S3)/SBIG3
    R3 = ABS(S3)/SBIG3
    IF(((R1.GT.1.AND.(R2.GT.0.5.DR.RJ.GT.O.5))
    IF(((R1.GT.1.AND.(R2.GT.0.5.DR.RJ.GT.O.5))
& .DR.(R2.GT.1.AND.(R1.GT.0.5.OR.R3.GT.0.5))
& .DR.(R2.GT.1.AND.(R1.GT.0.5.OR.R3.GT.0.5))
& .OR.(R3.GT.1.AND.(R1.GT.0.5.OR.R2.GT.0.5)))
& .OR.(R3.GT.1.AND.(R1.GT.0.5.OR.R2.GT.0.5)))
& .AND. (L2-L1.LT.3)
& .AND. (L2-L1.LT.3)
& .AND. (L3-L2.LT.3)
& .AND. (L3-L2.LT.3)
& .AND.(L4-L3.LT.3)) THEN
```

\& .AND.(L4-L3.LT.3)) THEN

```
    TEST FOR TWO HEIGHT ERRORS.
    \(72=A B S(51+52+53)\)
    ZZR \(=\) CON * DTALL * SQRT ( \((B S U M 1+B S U M 2) * * 2+\)
* (BSUM2+BSLM3)**2)
    IF (ZZ.LT.ZZR) THEN
        ZCORI (L2, ISCAN) \(=-51\)
        ZCDRI (L3, ISCAN) \(=53\)
        ZOLD2 \(=\) ZL. 2
        ZOLDS \(=\) ZLS
        CALL ZCORR (ZL2, ZCORI (L2, ISCAN), L2, ALLZL, 31, ALLZ, 5,
\&
            ICTYPI (L2, ISCAN),7)
        CALL ZCORP (ZL3, ZCORI (L3, ISCAN), L3, ALLZL, \(31, A L L Z, 5\),
            ICTYPI (LS, ISCAN),7)
        IF (L2. GE. 3. AND. ABS (ZCORI (L2, ISCAN) ). LT. 100.
\& .AND.ABS(ZCDRI (L3,ISCAN)).LT.100.) THEN
        ZL2 \(=\) ZDLD2
        ZL3 = ZDLD3
        ZCORI (L2, ISCAN) \(=0\).
        \(\operatorname{ZCORI}(L 3, I S C A N)=0\).
        ICTYPI (L2, ISCAN) \(=11\)
```

            ICTYPI(LS,ISCAN) = 11
        ENDIF
        ZI(L2,ISCAN) = ZL2
        ZI(L3,ISCAN) = ZLS
        TCDRI(L2,ISCAN) = 0.
        TCORI(LS,ISCAN) = 0.
        G0 TO 50
    ENDIF
    ```
C
C
C
    TEST FDR ERRDR TO LOWER HEIGHT, UPPER TEMPERATURE.
    \(Z T=A B S\) (BSLMM 3 ( \(51+52\) ) - BSLMM2*S3)
    \(Z T R=\) SQRT ( ( \(B S U M 1+\) BSUM2 \() * B S U M 3 * C O N * D T A L L) * * 2\)
\& \(+(\) (BSUM2+BSUM3) \(*\) CON*DZALL \() * * 2)\)
    IF (ZT.LT.ZTR) THEN
        ZCORI (L2, ISCAN \()=-51\)
        TCORI (LS, ISCAN) \(=53 /\) BSUMS
        ZOLD \(=\) ZL2
        TOLD \(=\) TLS
        CALL ZCDRR(ZL2, ZCORI (L2,ISCAN),L2,ALLZL,31,
\& ALLZ, 5, ICTYPI (L2, ISCAN), 7)
    CALL TCORR(TL2,TL3,TL4,TCORI(L3,ISCAN), IL2, ZL3, ZL4,
\& ALLT, 101, ICTYPI (L3, ISCAN), 0, 9)
    IF(ICTYPI (L3, ISCAN).EQ.12) THEN
        ICTYPI (L2, ISCAN \()=99\)
        ICTYPI (LS,ISCAN) \(=99\)
        \(\mathrm{ZLZ}=\) ZOLD
        TLS \(=\) TOLD
        ZCORI (L2, ISCAN) \(=0\).
        \(\operatorname{TCORI}(L 3, I S C A N)=0\).
    ENDIF
    ZI(L2,ISCAN) \(=\) ZL2
    TI (L3, ISCAN \()=\) TLS
    ZCORI (L3,ISCAN) \(=0\).
    \(\operatorname{TCORI}(L 2\), ISCAN \()=0\).
    GO TO 50
    ENDIF

TEST FOR ERRDR TD LDWER TEMPERATURE, UPPER HEIGHT.
ᄃ
\(T Z=A B S(B S U M 1 *(52+53)-B S U M 2 * S 1)\)
TZR \(=\) SQRT ( ( \((\) BSLM \(2+\) BSUM3) *BSUM1 *CON*DTALL) **2
\& \(+(\) (BSUM1+BSUM2)*CON*DZALL)**2)
IF (TZ.LT.TZR) THEN
ZCORI (L3, ISCAN) \(=53\)
TCORI (L2, ISCAN) \(=51 /\) BSUM1
ZOLD \(=2 L 3\)
TOLD \(=\) TLZ
CALL ZCORR (ZL3, ZCORI (L3, ISCAN), L3, ALLZL, 31, ALLZ,5; ICTYPI (L3, ISCAN), 10)
CALL TCDRR(TL1, TL2, TL3, TCDRI (L2, ISCAN); ZL1, ZL2, ZL3,
\& ALLT, 101, ICTYPI (L2, ISCAN), 0, 10)
IF (ICTYPI (L2, ISCAN).EQ.12) THEN
ICTYPI (L2, ISCAN) \(=97\)
ICTYPI (L3,ISCAN) \(=99\)
ZL3 \(=\) ZOLD
TL2 \(=\) TOLD
ZCORI (LS, ISCAN) \(=0\).
\(\operatorname{TCORI}(L 2 ; I S C A N)=0\).
ENDIF
ZI(L3,ISCAN) = ZL3
TI(L2,ISCAN) \(=\) TL2
TCORI (L3, ISCAN) \(=0\).
\(\operatorname{ZCORI}(L 2, I S C A N)=0\).
GO TO 50
ENDIF
ENDIF
150 CONTINUE

CHECK FOR TYPE 3 ERRORS.
IF ( (ABS (S1). GT. SBIG1.AND.ABS (S2). GT. O. 5*SBIG2)
\& . OR. (ABS (S2). GT. SBIG2.AND.ABS(S1).GT.O.5*SBIG1)) THEN
ZCORI (L2, ISCAN) \(=(\) BSUM1*S2 - BSUM2*S1)/(BSUM1+BSUM2)
\(\operatorname{IF}(L 2 . L E .3)\) ZCORI (L2,ISCAN) = ANINT(ZCORI (L2,ISCAN) )
IF (L2.GT.3) ZCORI (L2,ISCAN) \(=10\). *ANINT (ZCORI (L2, ISCAN)/10.)
TCORI (L2, ISCAN) \(=(51+52) /(B S U M 1+B S U M 2)\)
TCORI (L2,ISCAN) \(=0.1 * \operatorname{ANINT}(10 . * T C O R I(L 2, I S C A N))\)
ICTYPI (L2, ISCAN) \(=3\)
GO TO 50
ENDIF
CHECK FOR ERROR (S) AT THE BDTTOM.
IF (L2.EQ. LB. AND.ABS (S2). GT. SBIG2.
\& AND.ABS (S3).LT. O. 5*SBIG3) THEN
ZCORI (L2, ISCAN) \(=52\)
IF (L2.LE.3) ZCORI (L2, ISCAN) = ANINT (ZCORI (L2, ISCAN))
IF (L2.GT.3) ZCORI (L2,ISCAN) =10. * ANINT (ZCORI (L2, ISCAN)/10.)
TCORI (L2, ISCAN) \(=52 / B S U M 2\)
TCDRI (L2,ISCAN) \(=0.1 *\) ANINT (10.*TCORI (L2, ISCAN) )
\(\operatorname{ICTYPI}(L 2\), ISCAN \()=4\)
GO TO 50
ENDIF
```

C CHECK FOR ISOLATED LARGE RESIDUAL.
c
IF(ABS(S2).GT.1.5*SBIG2.AND.ABS(S1).LT.O.5*SBIG1.
\& AND.ABS(S3).LT.0.5*SBIGS) THEN
ICTYPI(LS,ISCAN) = %
GO TO 50
ENDIF
NO ERRORS FOUND. GO BACK TO 5O TO GET
NEXT LEVELS OF DATA.
GO TO 50
CHECK FOR ERRDR(S) AT THE TOP. THEN RETURN
FOR SECOND PASS (TO STATEMENT 40).
200 CONTINUE
NDTE THAT S2; SS ARE NOT RECLACULATED IN THIS SPECIAL CASE.
HOWEVER, THE L`S HAVE BEEN RECALCULATED.
CHECK FOR ERRDR AT THE TDP.
IF (ABS (S3).GT. SBIG3.
\& AND.ABS(S2).LT.O.5*SBIG2) THEN
ZCORI (LS,ISCAN) = -53
IF(LS.LE.3) ZCDRI(LS,ISCAN) = ANINT(ZCDRI (LJ,ISCAN))
IF(LS.GT.3) ZCORI(LS,ISCAN) = 10. * ANINT(ZCORI (LS,ISCAN)/10.)
TCORI (L3,ISCAN) = 53/BSUMS
TCORI(L3,ISCAN) = 0.1 * ANINT(10.*TCORI(LS,ISCAN))
ICTYPI (LS,ISCAN) = 5
ENDIF
GO TO 40
300 CONTINUE
COME HERE TD FILL IN DUTPUT FIELDS.
DD 320 K=1,LEV
ZC(K)=ZI(K,3)
TC(K) = TI(K,3)
S(K)=SI(K;2)
ICTYP(K) = 0
ZCOR(K) = 0.
TCOR(K) = 0.
DO 310 II=1,3
IF(ICTYPI(K,II).NE.O) ICTYP(K) = ICTYPI(K,II)
IF(ZCORI(K,II).NE,O.) ZCOR(K) = ZCORI (K,II)
IF(TCDRI (K,II).NE.O.) TCOR(K) = TCDRI (K,II)
CONTINUE
320 CONTINUE
END

```
```

C*****************************************************************
SUBRDUTINE RES(Z1,Z2,T1,T2,L1,L2,A,B,SS,S,BSUM,SBIG)
C串串 SUBPRDGRAM DOCUMENTATIDN BLOCK
C
C SUBPROGRAM: RES CALCULATE HYDROSTATIC RESIDUALS
C PRGMMR: W. COLLINS DRG: W/NMC22 DATE: 89-02-02
C
C ABSTRACT: CALCULATE HYDROSTATIC RESIDUAL FOR MANDATORY
C
C
C PROGRAM HISTORY LDG:
C 89-02-O2 ORIGINAL W. COLLINS
C
C USAGE: CAL RES(Z1,Z2,T1,T2,L1,L2,A,B,SS,S,BSUM,SBIG)
C
C
C INPUT ARGUMENT LIST:
(Z1,T1) - LOWER HEIGHT (M) AND TEMPERATURE (CELCIUS)
(Z2,T2) - UPPER HEIGHT AND TEMPERATURE
(L1,L2) - INDICES FOR TWO LEVELS
A,B - ARRAYS OF COEFFICIENTS
SS - ARRAY DF ADMISSIBLE RESIDUALS
OUTPUT ARGUMENT LIST:
S - RESIDUAL FOR LAYER
BSUM - B FDR LAYER
SBIG - ADMISSIBLE RESIDUAL FDR LAYER
C
C ATTRIBUTES:
C LANGUAGE: VS FORTRAN
C MACHINE: NAS
L
C串串
DIMENSION A(1), B(1), SS(1)
ASUM = 0.
BSUM =0.
SSUM =0.
L2M = L2 - 1
DO 10 L=L1,L2M
ASUM = ASUM + A(L)
BSUM = BSUM + B(L)
SSUM = SSUM + SS(L)**2
10 CONTINUE
SBIG = SQRT (SSUM)
S=Z2 - Z1 - ASUM - BSUM* (T1+T2)
RETURN
END

```

```

    SUBROUTINE FNLEV(LAST, Z,T,ZL1,ZL2,ZL3,ZL4,TL1,TL2,TL3;
    8 TL4,L1,LZ,L3,L4,NLEV,IER)
    C
C
C
C
C
C
C
C
C
C
c
FIND NEXT COMPLETE LEVEL OF DATA.
LAST - INPUT: LAST LOWEST OF 4 COMPLETE LEVELS
OUTPUT: NEXT LOWEST OF 4 COMPLETE LEVELS
Z - ARRAY DF INPUT HEIGHTS (M)
T - ARRAY OF INPUT TEMPERATURES (CELCIUS)
(ZL,TL) - VALUES OF Z, T AT NEXT 4 COMPLETE LEVELS
L'S - INDEX FOR NEXT 4 COMPLETE LEVELS
SET EQUAL TO }99\mathrm{ FOR NO MORE COMPLETE LEVEL
NLEV - NUMBER OF LEVELS OF Z,T.
IER =0 4 MORE COMPLETE LEVELS FOUND
= 1 LESS THAN 4 MORE COMPLETE LEVELS
DIMENSION Z(1), T(1), ZL(4), TL(4), L(4)
DATA ZMAX /90000./, TMAX /9000./
DATA ZMSG /99999./, TMSG /9999.9/, LMSG /99/
IER = 0
DO 5 I=1,4
L(I) = LMSG
ZL(I) = ZMSG
TL(I) = TMSG
5 CONTINUE
LL = LAST + 1
DO 30 I=1,4
DO 20 J=LL,NLEV
JJ = J
IF(Z(J).LT.ZMAX.AND.T(J).LT.TMAX) GO TO 25
20 CONTINUE
IER = 1
GO TO 40
25 CONTINUE
ZL(I) = Z(JJ)
TL(I) = T(JJ)
L(I) = JJ
IF(I.EQ.1) LAST = JJ
LL = JJ + 1
30 CONTINUE
4O CONTINUE
L1 = L(1)
L2 = L(2)
LJ =L(3)
L4=L(4)
ZL1 = ZL(1)
ZLZ = ZL(2)
ZLS = ZL(3)
ZL4 = ZL(4)
TL1 = TL(1)
TL2 = TL(2)
TLS = TL(3)
TL4 = TL(4)
RETURN
END

```
```

[**************************************************************
SUBROUTINE FIRST (LAST, Z,T,ZL1, ZL2, ZL3, ZL4,TL1,TL2,TLJ,
* TL4,L1,L2,L3,L4,NLEV,IER)
C
C FIND FIRST 3 COMPLETE LEVEL OF DATA.
C LAST - DUTPUT: LOWEST 3 COMPLETE LEVELS
C
C
C
C
C
C
C
C
C
DIMENSION Z(1), T(1), ZL(4), TL(4), L(4)
DATA ZMAX /70000./, TMAX /9000./
DATA ZMSG /99999./, TMSG /9999.9/, LMSG /99/
IER = O
DO 5 I = 1,4
L(I) = LMSG
ZL(I) = ZMSG
TL(I) = TMSG
5 CONTINUE
LL = LAST + 1
DO 3O I=1,3
DO 20 J=LL,NLEV
JJ = J
IF(Z(J).LT.ZMAX.AND.T(J).LT.TMAX) GD TO 25
20 CDNTINUE
IF(I.LE.3) IER = 1
GO TO 40
25 CONTINUE
ZL(I+1)=Z(JJ)
TL(I+1)=T(JJ)
L(I+1)=JJ
IF(I.EQ.1) LAST=JJ
LL = JJ + 1
30 CONTINUE
40 CONT INUE
L1 = L(1)
LZ = L(2)
LS = L(3)
L4 = L(4)
ZL1 = ZL(1)
ZL2= ZL(2)
ZLS = ZL(3)
ZL4=ZL_(4)
TL1 = TL(1)
TL2 = TL(2)
TLS = TL(3)
TL4 = TL.(4)
RETURN
END

```

SUBROUTINE ZCORR(ZC, ZCOR,J,ALLZL,NZL, ALLZ,NZ, * ICTYP, ITYP)

C FINDS SIMPLE CORRECTION TO HEIGHT AND DOES PRDPER ROUNDING.
INPUT:
        ZC - gedpotential height (meters)
        ZCOR - HEIGHT CORRECTION (METERS)
        J - MANDATORY LEVEL INDEX
        ALLZL - ARRAY OF ALLOWABLE DEVIATIONS FROM ZCOR FOR
                HEIGHTS BELOW 5OOMB
        ALLZ - ARRAY OF ALLOWABLE DEVIATIONS FROM ZCOR FOR
                HEIGHTS AT AND ABOVE 5OOMB
        ITYP - CDRRECTION TYPE
    DUTPUT:
        ZC - CORRECTED GEDPDTENTIAL HEIGHT (METERS)
        ZCOR - HEIGHT CORRECTION APPLIED (METERS)
        ICTYP - CORRECTION TYPE
        NORMALLY PASSED FROM INPUT, BUT IF CORRECTION IS
        LESS THAN 100M, IT IS SET TO 11.
DIMENSION ALLZL(NZL), ALLZ (NZ)
C ROUND TO NEAREST 10 METERS ABQVE 700 MB .
C ROUND TD NEAREST METER BELDW SOOMB.
C
ICTYP \(=\) ITYP
IF (J.LE. S) THEN
    ZCOR \(=\) ANINT (ZCOR)
    CALL ONEDIG (ZCDR, ZC,ALLZL, NZL)
ELSE
    ZCOR \(=10\).*ANINT (ZCOR/10.)
    CALL ONEDIG(ZCOR, ZC, ALLZ,NZ)
    IF (ABS (ZCOR).LT. 100. AND. ITYP.LT.7) THEN
        ZCOR \(=0\).
        ICTYP \(=11\)
    ENDIF
ENDIF
ZC = ZC + ZCOR
RETURN
END
```

[****************************************************************
SUBRDUTINE TCDRR(TC1,TC2,TC3,TCOR2,ZC1,ZC2,ZC3,
\& ALLT,NT,ICTYP,IC,ITYP)

```
```

    FINDS SIMPLE CORRECTION TO TEMPERATURE AND DOES PRDPER
    ROUNDING.
    INPUT:
        TC - TEMPERATURE (CELCIUS)
        TCOR - TEMPERATURE CORRECTION (CELCIUS)
        ZC - GEOPOTENTIAL HEIGHT (METERS)
        JP,JM,JMM - MANDATORY LEVEL INDICES
        ALLT - ARRAY OF ALLOWABLE DEVIATIDNS FROM TCOR
        ITYP - CORRECTION TYPE
    DUTPUT:
        TC - CDRRECTED TEMPERATURE (CELCIUS)
        TCOR - TEMPERATURE CORRECTION APPLIED (CELCIUS)
        IC - SWITCH WHICH IS NORMALLY O OR POSITIVE, BUT
                SET TO NEGATIVE IF ONLY LOWER LAPSE IS TD
                BE CHECKED
        ICTYP - CORRECTION TYPE
                NDRMALLY PASSED FROM INPUT, BUT IF CORRECTION
                GIVES UNSTABLE LAYER(S), IT IS SET TO 12.
    DIMENSION ALLT(NT)
    DATA ALAPS /-.010737/, DTALL /5./
    ICTYP = ITYP
    TCOLD = TC2
    ALLDW FOR 10 PERCENT ERROR IN LAPSE RATE DUE TD
    RANgE OF AlLOWABLE TEMPERATURES.
    ALAPS = -(G/CP) * 1.10
    LAPSES BASED UPON ASSUMPTION OF SIGN ERROR...
    IF(ZCJ.NE.ZCZ.AND.IC.GE.0) THEN
        ALAPSP = (TC3+TC2)/(ZC3-ZC2)
    ELSE
        ALAPSP = 0.
    ENDIF
    IF(ZC2.NE.ZC1) THEN
        ALAPSM = (-TC2-TC1)/(ZC2-ZC1)
    ElSE
        ALAPSM = 0.
    ENDIF
    IF (ABS (2.*TC2+TCOR2).LT.DTALL
    & .AND.ALAPSM.GE.ALAPS
    & .AND.ALAPSP.GE.ALAPS) THEN
        TC2 = -TC2
        TCOR2 = 2. * TC2
    ELSE
        ROUND THE CORRECTION TO NEAREST TENTH DEGREE
        TCOR2 = .1 * ANINT (10.*TCOR2)
        ROUND THE TEMPERATURE TO NEAREST TENTH DEGREE
        (THIS SHOULD BE UNNECESSARY)
        TC2 =.1 * ANINT(10.*TC2)
        FIND SIMPLE CORRECTIDN FDR VALUES TO TENTHS.
    ```
```

    ICDRT = 10. * TCDR2
    ICCT = 10. * TCZ
    TCORT = ICDRT
    TCT = ICCT
    CALL ONEDIG(TCORT, TCT, ALLT, NT)
    TCOR2 = 0.1 * TCORT
    IF (ABS (TCOR2).LT.5.) THEN
    TCOR2 = 0.
    TC2 = TCOLD
    ICTYP = 22
    RETURN
    ELSE
    TC2 = 0.1 * (TCT + TCDRT)
    ENDIF
    ENDIF
C MAKE SURE THAT THE LAPSE RATES ABDVE AND BELOW
C ARE ADIABATICALLY STABLE. IF NDT, RESTORE
MORE THAN ONE LAYER MISSING.
IF(ZCS.NE. ZC2.AND.IC.GE.O) THEN
ALAPSP = (TC3-TC2)/(ZC3-ZC2)
ELSE
ALAPSP =0.
ENDIF
IF(ZCZ.NE. ZC1) THEN
ALAPSM = (TCZ-TC1)/(ZC2-ZC1)
ELSE
ALAPSM = 0.
ENDIF
IF (ALAPSM.GE. ALAPS
\& .AND.ALAPSP.GE.ALAPS
\& .AND.JP-JMM.LE.3
\& . AND.((TC3-TC2)*(TC2-TC1)).GT.-40. )
\& THEN
ICTYP = ITYP
ELSE
TC2 = TCOLD
TCOR2 = 0.
ICTYP = 12
ENDIF
RETURN
END

```
C

SHAT \(=(A B S(51)+A B S(52)) /(S B I G 1+S B I G 2)\)
IF (SHAT.LE. 1.) THEN \(F S H A T=1\).
ELSE
FSHAT \(=1 .+\operatorname{ALOG10(SHAT)}\)
ENDIF
RETURN
END```

